
2426 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 4, APRIL 2013
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Abstract—This paper presents a new fading model for
multi-input multi-output channels: the Jacobi fading model.
It asserts that , the transfer matrix which couples the
inputs into outputs, is a submatrix of an random
(Haar-distributed) unitary matrix. The (squared) singular values
of follow the law of the classical Jacobi ensemble of random
matrices, hence the name of the channel. One motivation to define
such a channel comes from multimode/multicore optical fiber
communication. It turns out that this model can be qualitatively
different from the Rayleigh model, leading to interesting practical
and theoretical results. This paper first evaluates the ergodic
capacity of the channel. Then, it considers the nonergodic case,
where it analyzes the outage probability and the diversity-multi-
plexing tradeoff. In the case where , it is
shown that at least degrees of freedom are guaranteed not to fade
for any channel realization, enabling a zero-outage probability
or infinite diversity order at the corresponding rates. A simple
scheme utilizing (a possibly outdated) channel state feedback
is provided, attaining the no-outage guarantee. Finally, noting
that as increases, the Jacobi model approaches the Rayleigh
model, the paper discusses the applicability of the model in other
communication scenarios.

Index Terms—Diversity-multiplexing tradeoff, ergodic capacity,
fading model, Jacobi channel, MIMO channel, optical fiber com-
munication, outage probability, Rayleigh fading, space-division-
multiplexing.

I. INTRODUCTION

I Nmulti-input multi-output (MIMO) channels, a vector of
signals is transmitted, a vector of signals is re-

ceived, and an random matrix represents the cou-
pling of the input into the output so that the received vector is

, where is a noise vector. In this paper, we consider
a channel matrix which is a submatrix of a Haar-distributed
unitary matrix, i.e., drawn uniformly from the ensemble of all

unitary matrices, , .
The three classical and most well-studied random matrix en-

sembles are the Gaussian, Wishart, and Jacobi (also known
as MANOVA) ensembles [1]–[4]. A common model for the
channel matrix in fading wireless communication is a ma-
trix with independent Gaussian elements (also known as the
Rayleigh model). In that case, is a Wishart matrix. For
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the model assumed in this paper, follows the Jacobi en-
semble. It turns out that this model is both practically useful
and qualitatively different from other fading models such as the
Rayleigh [5]–[7], Rician [8]–[10], and Nakagami [10]–[13].
Jacobi ensembles, forming an important part of classical

random matrix ensembles, are of considerable interest in
connection with multivariate statistics and random matrix
theory [1]–[3]. These ensembles have been successfully ap-
plied in several problems. One notable example is related to
quantum conductance/transmission in mesoscopic systems [4],
[14]–[18], where scattering is modeled by a random unitary
matrix (owing to flux conservation) and the blocks of unitary
matrix are then the transmission/reflection matrices which
govern the conductance/transmission properties. This paper
provides another application in communication theory.
The motivation to introduce the Jacobi channel comes from

recent developments in optical fiber communication. The ex-
pected capacity crunch in long-haul optical fibers [19], [20]
led to proposals for “space-division multiplexing” (SDM) [21],
[22], that is to have several links at the same fiber, by either
multiple single-mode fiber strands within a fiber cable, multiple
cores within a multicore fiber, or multiple modes within a multi-
mode waveguide. An SDM system with parallel transmission
paths per wavelength can potentially multiply the throughput
of a certain link by a factor of . Since can potentially be
chosen very large, SDM technology is highly scalable. Now, a
significant crosstalk between the optical paths raises the need for
MIMO signal processing techniques. Unfortunately, for large
size MIMO (large ), this is unfeasible currently in the optical
rates. Assuming that faster computation will be available in the
future and having in mind that replacing optical fibers to support
SDM is a long and expensive procedure, a long-term design is
sought after. To that end and more, it was proposed to design an
optical system that can support relatively large number of paths
for future use, but at start to address only some of the paths. In
this scenario, the channel can be modeled as a submatrix of a
larger unitary matrix, i.e., the Jacobi model is applicable.
This under-addressed channel is discussed in [23] where

simulations of the capacities and outage probabilities were
presented. In this paper, we further analyze the channel in the
ergodic and nonergodic settings, where we provide analytical
expression for the capacity, outage probability, and the diver-
sity-multiplexing tradeoff (DMT). It should be noted that in
optical systems, the outage probability is an important measure,
required to be very low. Evidently, since the entire channel
matrix is unitary, when all paths are addressed, a zero-outage
probability can be attained for any transmission rate. An
interesting result that comes out of this work is that there
are situations where a partial number of paths are addressed
yet a number of streams are guaranteed to experience zero
outage. Thus, choosing the number of addressed paths and the
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corresponding rate is a very critical design element that highly
reflects on the system outage and performance. A preliminary
description of our work, in the context of the SDM optical
channel, is provided in [24].
A possibly practical outcome of this work is a simple commu-

nication scheme, with channel state feedback, that achieves the
highest rate possible with no outage. The scheme works even
when the feedback is “outdated,” and it allows simple decoding
with no complicated MIMO signal processing, making it plau-
sible for optical communication. We note that while our theoret-
ical findings indicate that the no-outage promise can be attained
with no feedback, the quest for such simple schemes is open.
As noted above, the motivation for this work comes from

optical fiber communication. Yet, the application of the Jacobi
model and the insights that follow from it may be relevant in
other cases, such as inline communication and even wireless
communication. While a constant can be applied to account for
the average power loss in the medium, the randomness structure
of the loss can be modeled using the Jacobi model. As in-
creases with respect to , , the randomness of the absolute
received power increases. Evidently, in typical wireless commu-
nication, a large fraction of the energy is not captured, and so the
channel can be modeled as a small submatrix of a large unitary
matrix. Indeed, it will be shown that as becomes larger in
comparison to , , the Jacobi model (up to a normalizing
constant) approaches the Rayleigh model.
This paper is organized as follows. We start by defining the

system model and presenting the channel statistics in Section II.
An interesting transition threshold is revealed: when the number
of addressed paths is large enough, so that
, the statistics of the problem changes. Using this observa-
tion, we give analytic expressions for the ergodic capacity in
Section III. In Section IV, we analyze the outage probabilities
in the nonergodic channel and show that for , a strictly
zero-outage probability is obtainable for degrees of freedom.
Following this finding, we present in Section V a new com-
munication scheme which exploits a channel state feedback to
achieve zero-outage probability. Section VI discuss the DMT
of the channel where we show an absorbing difference in the
maximum diversity gain between the Rayleigh fading and Ja-
cobi channels. Section VIII discusses the results.

II. SYSTEM MODEL AND CHANNEL STATISTICS

We consider an SDM system that supports spatial propa-
gation paths. In tribute to optical communication, in particular
multimode optical fibers, the initial motivation for this work, we
shall refer to these links as modes. Assuming a unitary coupling
among all transmissionmodes, the overall transfer matrix can
be described as an unitary matrix, where each entry
represents the complex path gain from transmitted mode to re-
ceived mode . We further assume a uniformly distributed uni-
tary coupling, that is, is drawn uniformly from the ensemble
of all unitary matrices (Haar distributed). Considering
a communication system where and modes
are being addressed by the transmitter and receiver, respectively,

the effective transfer matrix is a truncated version of . Under
these conditions, the channel can be described as

(1)

where the vector containing complex components repre-
sents the transmitted signal, the vector containing com-
plex components represents the received signal, and accounts
for the presence of additive Gaussian noise. The components
of are statistically independent, circularly symmetric complex
zero-mean Gaussian variables of unit energy . The
components of are constrained such that the average energy
of each component is equal to 1, i.e., for all .1

The term is proportional to the power per excited mode
so that it equals to the signal-to-noise ratio (SNR) in the single
mode case . The matrix is a block of size
within the random unitary matrix

(2)

As a first stage in our analysis, we establish the relation
between the transfer matrix and the Jacobi ensemble of
random matrices [1]–[3]. Limiting our discussion to complex
matrices, we state the following definitions.

Definition 1 (Gaussian Matrices): is an ma-
trix of i.i.d complex entries distributed as .

Definition 2 (Wishart Ensemble): , where ,
is an Hermitian matrix which can be constructed as ,
where is .

Definition 3 (Jacobi Ensemble): , where ,
, is an Hermitian matrix which can be constructed

as , where and are and ,
respectively.
The first two definitions are related to wireless communica-

tion [7]. We claim here that the third classical ensemble, the
Jacobi ensemble, is relevant to this channel model by relating
its eigenvalues to the singular values of . To that end, we
quote the well-known [1], [4] joint probability density function
(PDF) of the ordered eigenvalues of
the Jacobi ensemble

(3)

where is a normalizing constant. We say that vari-
ables follow the law of the Jacobi ensemble if
their joint distribution follows (3).
We shall now present the explicit distribution of the channel’s

singular values by distinguishing between the following two
cases.

1The constant per-mode power constraint, as opposed to the constant total
power constraint often used in wireless communication, is motivated by the
optical fiber nonlinearity limitation. Nevertheless, the total power constraint will
be considered as well when needed.
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A. Case I—

In [25, Th. 1.5], it was shown that for , satisfying the
conditions and , the eigenvalues of

have the same distribution as the eigenvalues of the
Jacobi ensemble . For , satisfying

and , since share the same dis-

tribution with , the eigenvalues of follow the law of
the Jacobi ensemble . Combining these two
results, we can say that the squared nonzero singular values of

have the same distribution as the eigenvalues of the Ja-
cobi ensemble , where here and
throughout this paper we denote and

.

B. Case II—

When the sum of transmit and receive modes, , is
larger than the total available modes, , the statistics of the sin-
gular values change. Clearly, when is the complete uni-
tary matrix , all singular values are 1. Thus,
having in mind that the columns of are orthonormal, one can
think of as a transition threshold in which the
size of is large enough with respect to the size of the com-
plete unitary matrix to change the singularity statistics. The fol-
lowing Lemma provides the joint distribution of the singular
values of , showing that for any realization of , there
are singular values which are 1. This lemma is
a corollary of a result of Paige and Saunders [26]; however, its
proof is given here for completeness.

Lemma 1: Let be an unitary matrix, divided into
blocks as in (2), where is an block with

. Then, eigenvalues of are 1,
are 0, and equal to the nonzero eigenvalues of

; if is Haar distributed, these eigenvalues
follow the law of the Jacobi ensemble

.
Proof: Since is unitary, we can write

(4)

and
(5)

Let and be the eigenvalues of

and , respectively. From (4), we can write

(6)

Since is a block of size where ,

has (at least) zero eigenvalues. Following

(6), has eigenvalues which are 1. Now, let

and be the eigenvalues of

and , respectively. From (5), we can write

(7)

Since for any matrix , and share the same nonzero
eigenvalues, we can combine (6) and (7) to conclude that the

additional eigenvalues of are equal to the

eigenvalues of . Note that of them are
0. Since the above arguments hold for any unitary matrix, and
since is a block of size , when
is Haar distributed, the results of Section II-A can be applied,
which completes the proof.

Lemma 1 reveals an interesting algebraic phenomenon:
singular values of are 1 for any

realization of . This provides some powerful results in the
context of Jacobi fading channels. For example, the channel’s
power , where denotes the Frobenius norm of ,
is guaranteed to be at least . Furthermore, always com-
prises an unfaded -dimensional subspace. In what follows, we
show that this implies a lower bound on the ergodic capacity, an
achievable zero-outage probability, and an “unbounded” diver-
sity gain for certain rates.

III. ERGODIC CASE

In the ergodic scenario, the channel is assumed to be rapidly
changing so that the transmitted signal samples the entire
channel statistics. We further assume that the channel realiza-
tion at each symbol time is known only at the receiver end.
It is well known [6] that the channel capacity in that case is
achieved by taking to be a vector of circularly symmetric
complex zero-mean Gaussian components, and is given by

(8)

where the maximization is over all covariance matrices of , ,
that satisfy the power constraints. Now, the capacity in (8) also
satisfies

(9)

where it is well known [6, Th. 1] that if the distribution of
is invariant under unitary permutations, is the op-
timal choice for (9). Since is Haar distributed, that is invariant
under unitary permutations, also is invariant under unitary
permutations. Thus, is the optimal choice for (8) and
by using the following equation:

we can conclude that the ergodic capacity is given by

(10)

A. Case I—

The following theorem gives an analytical expression to the
ergodic capacity for cases where . Using the
joint distribution of the eigenvalues of the Jacobi ensemble, we
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Fig. 1. Ergodic capacity, normalized by , as a function of . In (a), the number of supported modes is fixed , various numbers
of transmit receive modes; in (b), the number of addressed modes is fixed , various values of supported modes .

associate the ergodic capacity with the Jacobi polynomials [27,
8.96].

Theorem 1: The ergodic capacity of the channel defined in
(1) with , satisfying reads

(11)

where are the Jacobi polynomials

(12)

the coefficients are given by

and , .
Proof: See Appendix A, where the Gaudin–Mehta method

[28] is applied to analyze the ergodic capacity.

B. Case II—

Applying Lemma 1 to the channel capacity given in (10)
readily results in the following theorem.

Theorem 2: The ergodic capacity of the channel defined in
(1) with , satisfying reads

(13)

where is the SISO channel capacity .
Proof: According to (10), the ergodic capacity satisfies

(14)

(15)

where are the eigenvalues of . According to
Lemma 1, eigenvalues are 1 and the rest are equal

to the eigenvalues of . Applying that into (15)
results

(16)

Note that the second term on the right-hand side of (13),
, is given by Theorem 1 and reduces

to 0 when , or is equal to . Thus, (13) suggests that for
systems with , the ergodic capacity
is the sum capacities of unfaded SISO capacities and a Ja-
cobi MIMO channel with transmit modes and
receive modes. Fig. 1(a) depicts the ergodic capacity as a func-
tion of for and various combinations of , (note
that the ergodic capacity, in our case, is symmetric in , ;
thus, all combinations are plotted). As is evident from the figure,
a capacity equivalent to SISO channels is guaranteed in all
cases. In Fig. 1(b), the ergodic capacities for and
various values of supported modes are plotted. Note that as
increases, the power loss increases and the ergodic capacity be-
comes smaller. Unlike the common practice of expressing the
capacity in terms of the received SNR, here the capacities are
presented as a function of . This normalizes the capacity ex-
pression to reflect the capacity loss due to power loss including
power leaked into the unobserved modes. In particular, this pre-
sentation enables to examine the total effect (capacity loss) of
increasing . See further discussion in Section VII.

IV. NONERGODIC CASE

In the nonergodic scenario, the channel matrix is drawn ran-
domly but rather assumed to be constant within the entire trans-
mission period of each code frame. The figure of merit in the
nonergodic case is the outage probability defined as the proba-
bility that the mutual information induced by the channel real-
ization is lower than the rate at which the link is chosen to
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operate. Note that we assume that the channel instantiation is
unknown at the transmitter; thus, it cannot adapt the transmis-
sion rate. However, the channel is assumed to be known at the
receiver end. By taking an input vector of circularly symmetric
complex zero-mean Gaussian variables with covariance matrix
, the mutual information is maximized and the outage proba-

bility can be expressed as

(17)

where the minimization is over all covariance matrices sat-
isfying the power constraints. Since the statistics of are
invariant under unitary permutations, the optimal choice of ,
when applying constant per-mode power constraint, is simply
the identity matrix. We note that when imposing total power
constraint, the optimal choice of may depend on and and
in general is unknown, even for the Rayleigh channel. Never-
theless, when , the identity matrix is approximately the
optimal (see Section VI). Thus, in the following, we make the
simplified assumption that the transmitted covariance matrix is
the commonly used choice .
Now, let the transmission rate be

and let be the ordered nonzero eigenvalues of

; we can write

(18)

(19)

and evaluate this expression by applying the statistics of .

A. Case I—

Using (3), we can apply the joint distribution of into (19)
to get

(20)

where is a normalizing factor and describes the
outage event

This gives an analytical expression to the outage probability.
See Fig. 3 and the example below.

Example 1: Suppose and , satisfy .
In that case, the outage probability is given by

(21)

Fig. 2. as a function of for , 16, 64 (dashed, dotted and
solid, accordingly). Curves are drawn for outage probabilities , ,

(circle, square, diamond).

Thus, we can write

(22)

where is the incomplete beta function. Hence, to sup-
port an outage probability smaller than , and have to satisfy

(23)

where is the inverse function of . We de-
note the right-hand side of (23) by . Therefore, is
the normalized SNR at the transmitter, is proportional to the re-
ceived normalized SNR, and essentially measures the minimal
additional power required to support a target rate with outage
probability smaller than (additional power over the minimal
required in SISO unfading channel ). As is
smaller, one can afford higher data rate or smaller (smaller
transmission power).
In Fig. 2, we plot as a function of for various

numbers of available modes and desired outage probabili-
ties . For fixed and , increases as decreases
(since more power or lower data rate are needed to achieve
smaller outage probability). For fixed and , decreases
as increases (since more modes are addressed by the re-
ceiver; therefore, the power loss decreases). This is also true as
increases, while and are fixed (since the diversity at

the receiver increases, see SectionVI). Note that for ,
there is no power loss and we get , that is, the min-
imal transmission power required to support the rate , for any
, is .

B. Case II—

Applying Lemma 1 to (19) gives the following.

Theorem 3: The outage probability of the channel defined in
(1), with , satisfying , satisfies

(24)
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Fig. 3. Outage probability versus normalized rate for . In (a), the number of supported modes is fixed , various numbers of transmit receive
modes; in (b), the number of addressed modes is fixed , various values of supported modes .

where is the larger between and 0.
Proof: According to (19), the outage probability is given

by

(25)

where are the eigenvalues of . By applying
Lemma 1, we get

(26)

where are the eigenvalues of . When
, we get

.

Note that the right-hand side drops to 0, when , or ,
equals . Most importantly, when , ,
implying that for such rates zero-outage probability is achiev-
able. In addition, when , (24) implies
that the outage probability is identical to that of a channel with

modes addressed by the transmitter and modes
addressed by the receiver, which is designed to support a trans-
mission rate equivalent to single-mode channels. Thus, the
right-hand side of (24) applies to (20). In Fig. 3(a), we show an
exemplary calculation of the outage probability. These curves,
obtained from our analysis, were plotted in the same form as
the numerical results reported in [23]. Note how the outage
probability abruptly drops to 0 whenever becomes smaller
than . Also note that the outage probability is
symmetric in , since we applied a constant per-mode
power constraint; thus, all combinations of , are plotted
in Fig. 3(a). In Fig. 3(b), outage probability curves are plotted
for and various values of supported modes, .
Note that as is larger, more power is lost in the unaddressed

modes; therefore, as evident from the figure, the outage proba-
bility increases.

V. ACHIEVING THE NO-OUTAGE PROMISE

In the previous section, we saw that for systems satisfying
, a zero-outage probability is achiev-

able for any transmission rate below . In this
section, we present a new communication scheme that achieves
this promise with a transmission rate arbitrarily close to

. Using simple manipulations, the scheme exploits
a (delayed) channel state information (CSI) feedback to trans-
form the channel into independent SISO channels, supporting
streams (degrees of freedom) with zero-outage probability.
Let

be the unitary matrix realization at channel use and let

be the received signal. We assume a perfect knowledge of
at the receiver and a noiseless CSI feedback with a delay of a
single channel use. Since is unitary, a matrix can be
computed to complete into orthonormal columns. There-
fore, we shall assume that the receiver noiselessly communi-
cates this computed to the transmitter. Nevertheless, note
that for and certain matrix instantiations,
the computed is not unique and can be chosen wisely (see
Remark 4).
Now, let the transmitter excites the following signal from the

addressed modes at each channel use :

...
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That is, the transmitter conveys new information
bearing symbols and , a linear combination of the
signal that was transmitted in the previous channel use (
is a vector of zeros). Note that is unitary; thus, the power
constraint is left satisfied.
We shall now assume that after the last signal is received,

the receiver gets as a side information the following noisy mea-
sures:

(27)

where the components of are i.i.d. . Thus, the
receiver can linearly combine and in the following
manner:

(28)

to yield

(29)

where the entries of are i.i.d. . We remind that the
first entries of are new information bearing
symbols and the last entries are equal to . Thus,
the last entries of , denoted , satisfy

where are the last entries of . Again, the receiver
can linearly combine and as

(30)

to yield measures of as in (29). Repeating this procedure
for results in independent streams
of measures

...
...

The scheme above is feasible if the side information after
channel use is being conveyed by the transmitter through a
neglectable number of channel uses (with respect to , see Re-
mark 3). In that case, the receiver can construct
independent SISO channels, each with SNR . Thus, the

scheme supports a rate arbitrarily close (as is larger) to
with zero-outage probability. Note that the

scheme essentially completes the singular values of the channel
to 1. This is feasible since ; thus, at each channel
use, the transmitter can transmit , a signal of

entries, and new symbols.
The scheme presented above can be easily expanded to the

case where the feedback delay is channel uses. In that case,
the transmitter conveys at each channel use new
information bearing symbols and , a linear combi-
nation of the signal that was transmitted in channel uses be-
fore. After channel use , the transmitter would have to convey

noisy measures of the last signals, so that the receiver could
construct independent SISO channels. This can
be done in a fixed number of channel uses (see Remark 3); thus,
as is larger, the transmission rate of the scheme approaches

.

Remark 1 (Outdated Feedback): Our scheme exploits a
noiseless CSI feedback system to communicate a (possibly)
outdated information—the channel realization in previous
channel uses. Thus, the feedback is not required to be fast, that
is, no limitations on the delay time . However, if is smaller
than the coherence time of the channel, the feedback may carry
information about the current channel realization. Thus, the
transmitter can exploit the up-to-date feedback to use more
efficient schemes. Nevertheless, for systems with a long delay
time (e.g., relatively long distance optical fibers), the channel
can be regarded as nonergodic with an outdated feedback.
In these cases, our scheme efficiently achieves zero-outage
probability.

Remark 2 (Simple Decoding): The scheme linearly process
the received signals to construct independent
streams ofmeasures, each with SNR . This allows the decoding
stage to be simple, where a SISO channel decoder can be used,
removing the need for further MIMO signal processing.

Remark 3 (Side Information Measures): For a feedback with
a delay of channel uses, the transmitter has to convey ,
for each , such that the receiver can
extract a vector of noisy measures with SNR that is not smaller
than . This is feasible with a finite number of channel uses.
For example, the repetition scheme can be used to convey these
measures (see Section VI Example 2). Suppose each
is conveyed to the receiver within channel uses (e.g., for
the repetition scheme ). By taking large
enough (with respect to ), one can approach the rate

.

Remark 4 (Uniqueness of ): The scheme can be further
improved to support even an higher data rate with zero-outage
probability. For example, the last entries of the trans-
mitted signal at the first channel use can be used to excite in-
formation bearing symbols instead of the zeros symbols. Fur-
thermore, as was mentioned above, when ,

is not unique; there are many matrices
that complete the columns of into orthonormal vectors.
Thus, the receiver can choose to be the one with the largest
number of zeros rows. Now, at time , the transmitter excites

new symbols and , a retransmission of
, the transmitted signal at time . With an appropriate choice

of , contains entries that are zero. Instead, these
entries can contain additional new information bearing symbols.
An open question is how to further enhance the data rate. One
would like to exploit the feedback to approach the empirical ca-
pacity for any realization of . Note that this rate is achiev-
able with an up-to-date feedback. Further approaching this rate
with an outdated feedback system (and with zero-outage prob-
ability) is left for future research.
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VI. DIVERSITY MULTIPLEXING TRADEOFF

Using multiple modes/antennas is an important means to
improve performance in optical/wireless systems. The perfor-
mance can be improved by increasing the transmission rate
or by reducing the error probability. A coding scheme can
achieve both performance gains; however, there is a funda-
mental tradeoff between how much each can get. This tradeoff
is known as the DMT. The optimal tradeoff for the Rayleigh
fading channel was found in [29].2 In this section, we seek to
find the optimal tradeoff for the Jacobi channel.
To better understand the concepts of diversity and multi-

plexing gains in the Jacobi channel, we start with the following
example.

Example 2 (Repetition Scheme): Suppose the transmitter ex-
cites the following ( entries) signals in each consecutive
channel uses:

...
...

...

Let us make the simplifying assumptions that is an uncoded
QPSK symbol and that (similar results can be ob-
tained also for and for higher constellation sizes).
We further assume that the channel realization is known at the
receiver and is constant within the channel uses. It can be
shown that in that case, the average error probability satisfies

(31)

where the expectation is over , the eigenvalues of

. Here and throughout the rest of the paper, we use
to denote exponential equality, i.e., denotes

(32)

Now, for , we can apply the joint distribution
of the unordered eigenvalues of a Jacobi matrix

to write

(33)

2See further studies on the DMT of infinite constellations and correlated
MIMO channels in [30]–[33].

Note that the term

is the determinant of the Vandermonde matrix

...
...

Thus, we can write

(34)

where is the set of all permutations of and
denotes the signature of the permutation . Applying

(34) into (33) results (35), shown at the bottom of the page. It
can be further shown that the right-hand side of (35) is domi-
nated (for large ) by the term

where . Thus, for
, the average error probability satisfies

(36)

(37)

For , by applying Lemma 1 into (31), we get

where are the eigenvalues of . Thus, we can
conclude that the error probability of the repetition scheme sat-
isfies

,

,
(38)

In Fig. 4, we present the average error probability versus
for and various combinations of , (the error prob-
ability is symmetric in , ; thus, all combinations of ,

(35)
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Fig. 4. Average error probability of the repetition scheme versus , for fixed
number of supported modes and various numbers of transmit receive
modes. The error probability curves are depict in solid lines for systems satis-
fying and in dotted lines for systems satisfying .
The dashed lines are given to emphasize the decaying order of the nonexponen-
tially decaying curves.

are plotted). Note the decaying order of the curves and how
they turn exponentially decaying when .
Equation (38) implies that when using transmit and

receive modes, where , the exponent of the dom-
inant term in the average error probability is . Com-
paring to a system with a single transmit and a single receive
mode, the decaying order of the average error probability is
improved by a factor of . This gain is termed diversity
gain. When enough modes are being addressed by the trans-
mitter and the receiver to satisfy , we get an
average error probability that exponentially decays with ; that
is, an unbounded diversity gain. Thus, as more modes are being
addressed, the diversity gain of the repetition scheme is greater.
Since the total transmitted power is spread over all avail-
able modes, addressing only some modes at the receiver re-
sults in a power loss. As the number of these modes is larger,
the probability for a substantial power loss is smaller, hence
smaller error probability. As the signal is transmitted from more
modes, the average power in each receive mode is larger since
the propagation paths are orthogonal. This is in analogy to the
Rayleigh channel where as the signal passes through more (in-
dependent) faded paths, the decaying order of the error proba-
bility increases. However, it turns out that in the Jacobi channel,
there is a transition threshold in which enough modes are being
addressed to ensure a certain received power. This results in an
exponentially decaying error probability for certain rates.
Now, using multiple modes can also improve the data rate

of the system. In the example above, the rate is fixed,
for any . Increasing the data rate with to

support a rate of , for some
, can be achieved by increasing the constellation size of

the transmitted signal. In that case, the data rate is improved by
a factor of comparing to a system with a single transmit and
a single receive mode. This gain is termed multiplexing gain.3

By increasing the constellation size, however, the minimum dis-
tance between the constellation points decreases, resulting an

3The multiplexing gain in the given example is 0.

error probability with a smaller decaying order, that is, a smaller
diversity gain. Thus, there is a tradeoff between diversity and
multiplexing gains.
We now turn to analyze the DMT in the Jacobi model. To

that end, we formalize the concepts of diversity gain and multi-
plexing gain by quoting some definitions from [29].4

Definition 4: Let a scheme be a family of codes of
block length , one at each level. Let be the
rate of the code . A scheme is said to achieve spatial
multiplexing gain and diversity gain if the data rate satisfies

and the average error probability satisfies

For each , define to be the supremum of the diversity
advantage achieved over all schemes.

A. Case I—

The following theorem provides the optimal DMT of a Ja-
cobi channel with , , and satisfying .
In [29], it was shown that the average error probability in the
high-SNR regime (large ) is dominated by the outage prob-
ability. Furthermore, the outage probability for a transmission
rate , where is integer, is dominated by
the probability that singular values of the channel are 1 and
the other approach zero. We show that the distribution of the
singular values of the Jacobi and Rayleigh channels is approx-
imately identical near 0, essentially proving that the optimal
tradeoff is identical in both models.

Theorem 4: Suppose . The optimal DMT
curve for the channel defined in (1), with , satis-
fying , is given by the piecewise linear func-
tion that connects the points for ,
where

(39)

Proof: See Appendix B.

Theorem 4 suggests that for , the optimal DMT
curve does not depend on . Note that relates to the extent
in which the elements of are mutually independent—the
dependence is smaller as is larger. Hence, at high SNR (large
), the dependence between the path gains has no effect on the
decaying order of the average error probability. Furthermore,
the optimal DMT is identical to the optimal tradeoff in the anal-
ogous Rayleigh channel (where the path gains are independent).

4Note that in [29], the definitions in 4 were made with respect to
the average SNR at each receive mode, denoted . However, since

, where is the transmitted covariance
matrix, we can write . Hence, the definitions
in 4 coincide with those in [29].
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Fig. 5. Optimal DMT curves for , and various numbers of supported modes .

B. Case II—

According to Theorem 3, a zero-outage probability is achiev-
able for rates below . Hence, for any

, there is a scheme with code
rates that achieves a zero-outage
probability; therefore, assuming be very large achieves an ex-
ponentially decaying error probability. In that case, the discus-
sion about diversity is no longer of relevance. Nonetheless, one
can think of the gain as infinite. This reveals an interesting dif-
ference between the Jacobi and Rayleigh channels—the max-
imum diversity gain is “unbounded” as opposed to in the
later case.

Theorem 5: The optimal DMT curve for the channel
defined in (1), with , satisfying , is given
by

,
, .

(40)

is the optimal curve for a Jacobi channel with
transmit and receive modes.
Proof: At high SNR, in terms of minimal outage prob-

ability, we can take the covariance matrix of the transmitted

signal to be ; see Appendix B. Thus, Theorem 3 can
be applied: for , the minimal outage prob-
ability is zero; hence, the error probability turns exponentially
decaying with (assuming is very large); for ,
the outage probability equals the outage probability for

in a system with transmit and
receive modes. Noting that at high SNR the error prob-

ability is dominated by the outage probability (see Appendix B)
completes the proof.

Note that in (40) is given by Theorem 4 for any
block length satisfying . Fig. 5 depicts the
optimal DMT curve for and various numbers of
supported modes .
In the following example, we try to illuminate the concept of

infinite diversity gain.

Example 3 : We consider the 2 2 Alam-
outi scheme [34]. Assuming a code block of length and
rate , the transmitter excites in each two
consecutive channel uses two information bearing symbols in
the following manner:
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Fig. 6. Comparison between Alamouti and the repetition scheme: , and various numbers of supported modes .

Maximum likelihood decoding linearly combines the received
measures and yields the following equivalent scalar channels:

(41)

where each is i.i.d. independent of and . The
probability for an outage event is given by

(42)

(43)

Now, in the Rayleigh channel, is chi-square distributed
with degrees of freedom. In that case, as was shown in
[29], the 2 2 Alamouti scheme can achieve maximum diver-
sity gain of 4. However, in the Jacobi channel:
1) for , we have ( unitary).
2) for , we have (by Lemma 1).
3) for , there is always a nonzero probability for an
outage event.

Therefore, for and , for any , we get
equivalent unfading scalar channels with strictly zero-outage
probability and one can think of the maximum diversity gain

as infinite. For , it can be shown that the maximum di-
versity gain is 4 and the DMT curve linearly connects the points

and .
In Example 2, we saw that for multiplexing gain , the

repetition scheme achieves a diversity gain of for systems
satisfying and an unbounded gain for systems
satisfying . Thus, for , the maximum
diversity gain of this scheme is 4 and it can be shown that the
DMT curve linearly connects the points (1/2, 0) and (0, 4). For

and , we get an unbounded diversity gain for any
multiplexing gain below .
In Fig. 6, we compare these DMT curves to the optimal

curves. Note that for , the Alamouti scheme achieves the
optimal DMT for .

VII. RELATION TO THE RAYLEIGH MODEL

The Jacobi fading model is defined by the transfer matrix
, a truncated version of a Haar-distributed

unitary matrix. We shall now examine the case, where is very
large with respect to and .
Assuming and , the statistics of the

squared singular values of the Jacobi channel model follow the
law of the Jacobi ensemble . This ensemble
can be constructed as

(44)
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Fig. 7. Comparing the 2 2 Rayleigh and Jacobi models for various numbers of supported modes . is the average SNR at each receive antenna. The ergodic
capacity is given in (a) and the outage probability for in (b).

where and are and independent
Gaussian matrices. Thus, the squared singular values of
share the same distribution with the eigenvalues of (44). Intu-
itively, in terms of the singularity statistics, the Jacobi channel
can be viewed as an subchannel of an nor-
malized Gaussian channel. Furthermore, for , we have

(45)

(46)

(47)

where in (45) we applied the law of large numbers ( is a vector
of independent components, each distributed ). In
the same manner, for , and ,
the squared singular values of the Jacobi channel share the same
distribution with the following ensemble of random matrices:

(48)

This allows us to conclude that up to a normalizing factor, the
Jacobi model approaches (with ) the Rayleigh model.
The discussion above provides an “intuitive” proof, using the

law of large numbers, to the fact that the Wishart ensemble ap-
proaches the Jacobi ensemble as . However, this re-
sult can be proved rigorously and is well known in random ma-
trix theory. The proof is based on the following. Given a weight
function and an interval , orthogonal polynomials sat-
isfy the relationship . The Laguerre
polynomials are orthogonal with respect to the weight function

and interval ; the Jacobi polynomials are orthog-
onal with respect to the weight function
and interval [27], [35]. Now, the joint eigenvalue den-
sities of the Wishart and Jacobi ensembles are proportional to

, where are the weight func-
tions related to the Laguerre and (shifted) Jacobi polynomials,
respectively. By taking the limit after scaling by

, it can be shown that the (shifted) Jacobi polynomials ap-
proach the Laguerre polynomials, which further proves above
conclusion.
Now, the issue of the normalizing constant in (47) and

(48), , should be further explained. With fixed , ,
increasing has two effects. One effect is power loss into the
unaddressed modes. This effect is actually pretty strong, so
that for a fixed , the channel matrix, the received SNR, and
hence the capacity vanish with . The other effect is that with
increasing , the channel matrix becomes more “random,”
e.g., the matrix elements becomes statistically independent,
and so the model is closer to the Rayleigh model. To compare
the Jacobi model to the Rayleigh mode, we need to compensate
for the power loss with increasing , and concentrate only
on the “randomness” effect. For this, we evaluate the channel
characteristics (capacity, outage probability) in terms of , the
average SNR at each receive mode, given by

(49)

In the Rayleigh channel, is Gaussian; thus, . For
the Jacobi channel, can be evaluated by applying the marginal
PDF of the channel’s singular values. This PDF is com-
puted in Appendix A. Nonetheless, for , , we can
apply (47) and (48) to have .
Following that, in Fig. 7, we compare the Rayleigh and Jacobi

models, for . As increases, the Jacobi model
approaches the Rayleigh model in terms of the ergodic capacity
and outage probability, as a function of . For example, with this
normalization, the difference between the ergodic capacities of
the Rayleigh and Jacobi models is less than 0.1 dB already for

.

VIII. DISCUSSION

The Jacobi MIMO channel is defined by the transfer matrix
, a truncated portion of an Haar-dis-

tributed unitary matrix. By establishing the relation between the
channel’s singular values and the Jacobi ensemble of random
matrices, we derived the ergodic capacity, outage probability,



2438 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 4, APRIL 2013

and optimal DMT. An interesting phenomenon is observed
when the parameters of the model satisfy :
for any realization of , singular values
are 1. This results in an ergodic capacity which is at least

times the SISO capacity. In the nonergodic
scenario, this enables a strictly zero-outage probability and an
exponentially decaying error probability (“infinite diversity”)
for any transmission rate below .
In this study, we considered the case where the full -matrix

is drawn according to Haar measure on the group of all
unitary matrices. This belongs to what is known in random
matrix theory as circular unitary ensemble (CUE). The eigen-

values of then correspond to Jacobi unitary ensemble.
It is known that, depending on certain symmetries of the system
to be modeled, one can have other kind of ensembles of uni-
tary matrices also, for example, circular orthogonal ensemble
(COE). In this case, the ensemble comprises of unitary matrices

which are symmetric, and then, the eigenvalues of cor-
respond to Jacobi orthogonal ensemble (JOE). Since the mar-
ginal density in this case is known, it can be used, as was done in
this study, to calculate the ergodic capacity, outage probability,
and DMT of the induced fading model. Furthermore, just as the
Rayleigh model is obtained in the limit , when
is taken from CUE, one-sided Gaussian model will follow if
is taken from COE. Thus, it will be interesting to find commu-
nication media with “reciprocity” or symmetry feature that can
be naturally modeled by the JOE.
The main motivation to define the Jacobi model comes from

optical communication. Nonetheless, the results presented in
this paper may provide conceptual insights on fading channels
in other communication scenarios. The size of the unitary ma-
trix, , can be viewed as the number of orthogonal propaga-
tion paths in the medium, whereas and are the number
of addressed paths at the transmitter and receiver, respectively.
The Jacobi fading model can be regarded as providing statistical
model for the structure of the power loss in a system, where
for fixed and , the size of the unitary matrix defines
the “fading measure” of the channel. For example, when is
equal to , the transfer matrix is simply composed of or-
thonormal columns: its elements (i.e., the path gains) are highly
dependent and there is no randomness in the received power.
As becomes greater, the orthogonality of the columns and
rows of fades, the dependence between the path gains be-
comes weaker, and the power loss in the unaddressed receive
outputs increases. Indeed, when is very large with respect to
and , with proper normalization that compensates for the

average power loss, the Jacobi fading model approaches to the
Rayleigh model. The Jacobi model, thus, introduces new con-
cepts in fading channels, providing a degree of freedom to scale
the model from a unitary channel up to the Rayleigh channel.

APPENDIX A
PROOF OF THEOREM 1

The Gaudin–Mehta method [28] is used here for proving The-
orem 1.

According to (10), the ergodic capacity satisfies

(50)

(51)

where we denote by the eigenvalues of . To
simplify notations, let us assume (one can simply
replace with to obtain the proof for ). Thus,
we can write

(52)

Now, the joint distribution of the ordered eigenvalues
is given by (3). The joint distribution of

the unordered eigenvalues equals

Thus, we can compute the density of by integrating out
, that is

(53)

By taking

(54)

we can write

(55)

where

(56)

and , . Now, the term

is the determinant of the Vandermonde matrix

...
...

(57)

With row operations, we can transform (57) into the following
matrix:

...
... (58)

where are the Jacobi polynomials [27, 8.96]. These
polynomials form a complete orthogonal system in the interval
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with respect to the weighting function
, that is,

(59)

where the coefficients are given by

(60)

Thus, we can write

(61)

where is the set of all permutations of ,
denotes the signature of the permutation , and is a
constant picked up from the row operations on theVandermonde
matrix (57). We apply (61) into (56) to get (62), shown at the
bottom of the page. By further integrating over and
applying (59), we get (64). This, however, implies that

for all , which results (65). Using (59) and the fact that
must integrate to unity, we then have

(66)

Turning back to , we get

(67)

where

(68)

APPENDIX B
PROOF OF THEOREM 4

The outage probability for a transmission rate is

(69)

where the minimization is over all covariance matrices of the
transmitted signal that satisfy the power constraints. As was al-
ready mentioned, since the statistics of is invariant under
unitary permutations, the optimal choice of , when applying
constant per-mode power constraint, is simply the identity ma-
trix. When imposing power constraint on the total power over
all modes, we can take if since

(70)

where we use to denote exponential equality, i.e.,
denotes

(71)

Equation (70) can be proved by picking to derive
an upper bound on the outage probability and to
derive a lower bound. It can be easily shown that these bounds
are exponentially tight (see [29]); hence, in the scale of interest,
we can take .
Now, let the transmission rate be , and

without loss of generality, let us assume that (the
outage probability is symmetric in and ). Since

we can apply the joint distribution of the ordered eigenvalues of

to write

(72)

(62)

(63)

(64)

(65)
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where , , is a
normalizing factor, and

is the set of that describes the outage
event. Letting

(73)

for allows us to write

(74)

Since

where , we can describe the set of outage
events by

Now, the term satisfies

(75)

Thus, we can write

(76)

(77)

In [29, Th. 4], it was shown that the right-hand side of above
satisfies

(78)

where

(79)

and

(80)

By defining for any ,
we can write

(81)

(82)

(83)

where

(84)

Using the continuity of , approaches as goes to zero,
and we can conclude that

(85)

This result was obtained in [29] for the Rayleigh model. From
here, one can continue as presented in [29], showing that the
error probability is dominated by the outage probability at high
SNR (large ) for ([29, Lemma 5 and Th. 2];
these proofs rely on (85) without making any assumptions on
the channel statistics and, therefore, are true also for the Jacobi
model).
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